
N87-20938

CASCADE MODEL OF CORONAL HEATING

A.A. van Ballegooijen
Center/or Astrophysics

Cambridge, Massachussets

INTRODUCTION

Coronal heating theories can be classified as either wave-heating or current-heating theories.
According to the wave-heating model, convective motions below the solar surface generate
MHD waves, which then propagate outward and dissipate their energy in the corona. Ob-

servations of line widths in the solar chromosphere seem to rule out the possibility that the
corona is heated by acoustic- or slow mode MHD waves (Athay and White 1978), leaving
Alfv_n- and fast mode waves waves as possible candidates of energy transport. According to
the current-heating model, the sub-surface convective motions cause random displacements of
the photospheric magnetic footpoints, leading to twisting and braiding of the coronal magnetic
field. The field-aligned electric currents associated with these twists are subject to resistive
dissipation. The current-heating model applies only to "closed" magnetic structures such as

coronal loops, whereas the wave model applies to both open structures (coronal holes) and
closed structures (active regions). Another difference between the two models is the time scale

r of the photospheric motions: in wave-heating models, r is smaller than or equal to the res-

onance time 2L/vA of the loop, whereas in current-heating models r >> 2L/vA (L is the loop
length, vA is the Alfv_n speed).

The details of the mechanisms responsible for wave- and current dissipation are presently
not well understood. The problem is that dissipative processes such as plasma resistivity
and viscosity are unimportant on the large spatial scales of observable coronal structures:

dissipation can occur only if there are strong gradients in the magnetic- and/or velocity field,
with length scales of 1 km or less in the corona. A crucial problem in any theory of coronal
heating is, therefore, to explain how such small-scale structures are generated. In the context
of the wave-heating theory, phase-mixing of Alfv_n waves, due to density inhomogeneities in
the solar corona, provides a way to produce small-scale structures (Heyvaerts and Priest 1983,
Sakurai and Granik 1984, Steinolfson 1985).

In the current-heating theory, which is the subject of the present paper, the magnetic energy
associated with the braided magnetic field must be similarly transferred to smaller scales. The
process by which this "cascade" of magnetic energy occurs is not well understood. Parker
(1972, 19"/9, 1983, 1986) suggests that the process is due to an intrinsic nonequilibrium of
magnetic fields: the equations of magnetostatic equilibrium seem to allow solutions only for
certain restrictive cases, in which the vertical component of the vorticity in the photosphere is
essentially a constant of motion (Parker 1986). Since the motions on the Sun do in general not
have this nice property, the magnetic field cannot simply adjust to the slow, random motions

applied at the photosphere, but is forced to evolve on the Alfv_n time scale LIRA. Parker
assumes this dynamical relaxation leads to the formation of discontinuities (current sheets),
where magnetic reconnection will occur until the topological constraints are satisfied. Hence,
according to the nonequilibrium model the formation of small-scale structures is due to a
relaxation process that takes place on the Alfv_n time scale.

Recently, I proposed a somewhat different picture of the cascade process (van Ballegooijen 1985,
1986, hereafter papers I and II). According to this model there are no special restrictions on the
velocity fields that may be applied at the photospheric boundary: the magnetic field in a coronal
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loop can evolve slowly through a series of equilibrium states, without the necessity for magnetic
reconnection. Hence, in our opinion the dynamical relaxation process proposed by Parker does

not occur. The necessary condition for equilibrium found by Parker (1972)was shown to result
from an incorrect ordering of terms in Parker's perturbation scheme (cf. appendix of paper
I). Therefore, a firm mathematical basis for Parker's concept of nonequilibrium seems to be
lacking.

In the absence of nonequilibrium, the magnetic field evolves through a series of equilibrium
states. Hence the formation of small-scale structures such as current sheets cannot be due

to the relaxation process by which magnetic equilibria are reached; if current sheet formation
occurs in closed coronal structures, it must be a result of the quasi-static evolution process. We
expect, therefore, that the time scale for current sheet formation is related to the time scale r
of the photospheric motions. To test this hypothesis, we need to understand the properties of
braided magnetic fields as they evolve quasi-statically in response to random motions applied
at the photospheric boundary. This is a rather difficult 3-dimensional problem, and a general
procedure for computing statistical quantities such as the magnetic power spectrum are not
known. However, one can gain some insight into the nature of the cascade process from a
simplified 2-dimensional problem, in which only a single plane transverse to the mean magnetic
field is considered (cf. paper II). In the following this model is briefly discussed.

STATISTICAL MODEL

Consider an initially uniform field B0 = B0 _, extending between two flat boundary plates
located at z = 0 and z = L. We assume that the field is perturbed by a random, incompressible
motion in the boundary plates, characterized by a correlation length l and a correlation time
r (we assume l _:: L). Then the velocity field in the interior of the volume is given by:

v = [vz(z,y,z,t),vy(z,y,z,t),O], (1)

and the magnetic field is approximately given by:

B = Bo[bz(z,y,z,t),b_(x,y,z,t),l], (2)

where bt and bv denote the transverse field components (bx,by _ 1). Assuming ideal MHD,
the induction equation can be written as:

dbz dvz
- = (3a)

dt dz

dby dv_ (3b)
dt - dz = %'

where d/dz is the spatial derivative along fieldlines, and d/dt is the co-moving time derivative.

The basic idea of the model is to consider an arbitrary plane z = zo in the interior of the volume
(0 < zo < L), and to consider the velocity v(z,y, z0, t)and the velocity gradient a_(z,y, zo,t)
at this plane as the independent statistical variables. Integration of equation (3a) then yields
the transverse field bz:

T

b_(R,T) = /a_(r(t),t) dt, (4)
0

where r(t) = [z(t),y(t),zo] is the path in the zo-plane that ends at position tt on time T. The
correlation between the b_-values at two different points R1 and R2 in the zo-plane is:

Cb(AR, T) =--< b_(R1,T)bz(R2,T) >
TT

f f < a=(rx(t') (ra(t") > dr'= ,t')ax ,t") dt". (5)

0 o
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By making suitable assumptions about the statistical properties of az, one can evaluate the

right hand side of equation (5), which yields the magnetic correlation function Cb(AR, T).
We omit here the details of the derivation, which is given in paper II. The magnetic power
spectrum Pb(k, T) as function of transverse wavenumber k is obtained by taking the Fourier
transform of Cb with respect to AR.

! I I I I I I I I I I

4

l--

c-

,.a
Q_

2
6

OJ- J 23
I I I I

-2 0 2 4 6 8

Ioglo kL

10

The results of the calculation are displayed in the above figure, which shows the magnetic
power spectrum Iper unit log k) as function of dimensionless wavenumber kl. The different

curves correspona co times T/tb = 0.4, 0.8, 1.2, 1.6, 2.0, and 2.4, where tb is the _braiding _
time defined by:

12
tb ---- , (6)

tt2T

and where £, r and u are the correlation length, correlation time and r.m.s, velocity of the
photospheric motions, respectively. Note that magnetic energy, injected into the system at
wavenumber k -._ £-1, is rapidly transferred to larger k: the maximum wavenumber in the

spectrum increases exponentially with time, implying a rapid cascade of magnetic energy to-
wards smaller length scales. This cascade takes place on the time scale tb, which is determined
entirely by the statistical properties of the photospheric motions. Note, that tb is somewhat

larger that the correlation time r, since the fluid displacements over one correlation time are
generally smaller than the correlation length (ur < £).

The exponential increases of the maximum wavenumber derives from the fact that, in an

incompressible random flow, the separation between closely neighboring fluid particles rl(t)
and rl(t) increases exponentially with time; the e-folding time is of order tb. Hence, the

correlation function < az(rl(t),t)az(r2(t),t) > appearing on the right hand side of equation
(5) vanishes for time differences (T - t) larger than tb ln(l/AR), when the separation of the
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particles becomes larger than the correlation length. As a result the correlation function
Cb(AR,T) has a logaritmic dependence on AR, with a sharp peak at AR - O. The Fourier
transform of Cb therefore has significant power at high wavenumbers.

The electric current density, j, = (c/4_r)[aB_/az - OBz/ay], involves the derivatives of the
transverse field, and therefore the power spectrum of current-density fluctuations is given by

Py(k,Y) -- k2Pb(k,T). It can be shown that the integral of Pj(k,Y) over wavenumber, which

is equal to < j2(T) >- j2ms, increases exponentially with time:

c Bo exp [2V/_b] . (7)jrms(T) ~ 4_r L

This should be contrasted with the "free" magnetic energy, which increases only quadratically
with time:

< B_(T) > B_) 2u4r_T 2 (8)
8_r 87r £2L2

Since the cascade of energy towards smaller scales proceeds exponentially in time, magnetic
diffusion and reconnection will become important after a time t I which depends logaritmically
on the magnetic Reynolds number:

In Rm

tl _ tb 6V/_--_ • (9)

Here Rm is defined as:
_2

Rm- (1o)
_tb'

where r/ is the magnetic diffusivity based on the classical (Ohmic) resistivity. For the sun,

Rm _ 101°, so that tl _ 1.Stb. This implies that only a small number of braids can be
introduced into the system before reconnection becomes important.

I suggest that for t _ tl a statistically stationary state develops, in which there is a continuous

transfer of magnetic energy from the scale l where the energy is put in, to the scale £R_ 1/2

where the energy is dissipated. The dissipation rate Ex in this stationary regime can be
estimated as the time derivative of expression (8), evaluated at the time t l when reconnection
processes first become important; this yields:

E_ _ B°2 2u2r lnRm (11)
8r 3L2v/2-_ '

i.e., the heating rate depends logaritmically of the Reynolds number. Note that EH is propor-

tional to the product u2r, which is directly related to the effective diffusion constant of the
photospheric motions:

D = lu2rv/_. (12)

Observations of the spreading of active regions over time scales of months indicate that D

is in the range of 150- 425 km2/s (DeVore et al. 1985). With B0 = 100 G and L = 10 s

kin, parameters typical for large active regions, we find EH "-" 5 x 10 -s erg/cm3/s, which

corresponds to an energy flux of 2.5 x 10 s erg/cm2/s at each footpoint. This energy flux is
a factor 40 smaller than the observed radiative- and conductive losses in active regions (cf.

Withbroe and Noyes 1977). There are a number of possible reasons for this discrepancy:
1) Our assumption that EH equals the energy input rate at t = tl probably under-estimates the

heating rate, since the input rate may continue to increase for some time after reconnection
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first becomes important. To see whether this is the case, it is necessary to include magnetic
diffusion in the above analysis.

2) There may be small-scale photospheric motions with D > 1000 km2/s which have so far
escaped detection.

3) It is possible that random photospheric motions are not the primary cause of coronal heating
in active regions; periodic motion associated with Alfv_n waves may be a more important
source of energy.

In summary, we suggest that the quasi-staticevolution of coronal magnetic structures ischar-
acterizedby a cascade of magnetic energy to smaller length scales.This cascade process takes

place on a time scale tb determined entirelyby the photospheric motions. The Ohmic heating

rate EH in the statisticallystationary state was estimated using observational data on the dif-

fusivityof photospheric motions; E_ turned out to be too small by a factor 40 when compared
with observed coronal energy losses.However, given the fact that our theoreticalestimate is

based on a rather uncertain extrapolation to the diffusiveregime, current heating cannot be

ruled out as a viable mechanism of coronal heating.
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